Międzynarodowy zespół astronomów użył Atacama Large Millimeter/submillimeter Array (ALMA), a także wielu innych teleskopów naziemnych i kosmicznych, do uzyskania najlepszego obrazu kolizji pomiędzy dwoma galaktykami, która nastąpiła gdy Wszechświat miał zaledwie połowę obecnego wieku. Badacze skorzystali z pomocy szkła powiększającego w postaci galaktyki, aby dostrzec normalnie niewidoczne szczegóły. Nowe badania galaktyki H-ATLAS J142935.3-002836 dowiodły, że ten złożony i odległy obiekt wygląda podobnie jak dobrze znane i znacznie bliższe zderzenia galaktyk o nazwie Galaktyki Anteny (Antennae Galaxies).

Słynny fikcyjny detektyw Sherlock Holmes używał szkła powiększającego, aby ujawnić ledwie widoczne, ale ważne dowody. Astronomowie połączyć moc wielu teleskopów na Ziemi i w kosmosie [1] ze zdecydowanie większą kosmiczną soczewką, aby zbadać przypadek żywiołowego powstawania gwiazd we wczesnym Wszechświecie.

O ile astronomowie często są ograniczani mocą swoich teleskopów, to w niektórych przypadkach zdolność dostrzegania szczegółów może być znacząco wzmocniona przez naturalne soczewki istniejące we Wszechświecie” – wyjaśnia główny autor publikacji, Hugo Messias z Universidad de Concepción (Chile) oraz z Centro de Astronomia e Astrofísica da Universidade de Lisboa (Portugalia). „W swojej ogólnej teorii względności Einstein przewidział, że gdy istnieje odpowiednia masa, to światło nie porusza się po linii prostej, ale zostaje zakrzywione w sposób podobny do zakrzywienia w soczewce”.

Kosmiczne soczewki są tworzone przez masywne struktury takie jak galaktyki i gromady galaktyk, które swoją silną grawitacją zaburzają światło obiektów znajdujących się za nimi – efekt ten zwany jest soczewkowaniem grawitacyjnym. Powiększające własności tego efektu pozwalają astronomom na badanie obiektów, które bez tego nie byłyby widoczne. Badacze mogą porównywać lokalne galaktyki ze znacznie odleglejszymi, widzianymi w okresie gdy Wszechświat był znacznie młodszy.

Ale aby grawitacyjna soczewka zadziałała, soczewkująca galaktyka oraz obiekt znajdujący się daleko za nią, muszą być ułożone na jednej linii z Ziemią. „Szanse na takie usytuowanie są małe i trudne istniejące przypadki zidentyfikować” – dodaje Hugo Messias. „Ale najnowsze badania dowiodły, że obserwując w zakresie dalekiej podczerwieni i fal milimetrowych można takie przypadki znajdować znacznie efektywniej”.

Na rysunku schematycznie przedstawiono zjawisko soczewkowania grawitacyjnego, dzięki któremu możemy obserwować bardzo odległe galaktyki.

H-ATLAS J142935.3-002836 (lub w skrócie H1429-0028) jest właśnie jednym z takich źródeł, znalezionym w ramach przeglądu Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Na zdjęciach w zakresie widzialnym jest bardzo słabe, ale to jeden z najjaśniejszych obiektów soczewkowanych grawitacyjnie w zakresie dalekiej podczerwieni. Obiekt widzimy w okresie gdy Wszechświat miał zaledwie połowę obecnego wieku.

Zbadanie tego obiektu to granica obecnych możliwości, więc międzynarodowy zespół astronomów rozpoczął szeroko zakrojoną kampanię obserwacyjną za pomocą najpotężniejszych teleskopów – zarówno naziemnych, jak i kosmicznych, w tym Kosmicznego Teleskopu Hubble'a (NASA/ESA), Obserwatorium Kecka, Karl Jansky Very Large Array (JVLA) i innych. Różne teleskopy dostarczają różnych obrazów, które można połączyć razem, aby uzyskać najlepszy wgląd w naturę tego nietypowego obiektu.

Zdjęcia z Hubble’a i Kecka ukazały szczegółowo wytworzony grawitacyjnie pierścień światła wokół pierwszoplanowej galaktyki. Fotografie w dużej rozdzielczości pokazały także, że soczewkująca galaktyka jest usytuowana do nas brzegiem dysku – podobnie jak nasza galaktyka Droga Mleczna – przez co część światła jest przesłonięta obłokami pyłu.

Ale przesłanianie nie jest problemem dla ALMA i JVLA, gdyż oba te instrumenty obserwują niebo na znacznie dłuższych falach, na które nie wpływa pył. Korzystając z połączonych danych zespół odkrył, że system widoczny w tle przechodzi właśnie zderzenie pomiędzy dwoma galaktykami. Od tego momentu ALMA i JVLA zaczęły odgrywać kluczową rolę w poznawaniu dalszych własności obiektu.

W szczególności ALMA wykryła tlenek węgla, który umożliwia dokładne badania nad mechanizmami powstawania gwiazd w galaktykach. Obserwacje ALMA pozwoliły także na zmierzenie ruchu materii w odleglejszym obiekcie. Kluczowe było pokazanie, że soczewkowaty obiekt faktycznie jest w trakcie kolizji galaktycznej i tworzy setki nowych gwiazd rocznie, a także że jedna ze zderzających się galaktyk nadal wykazuje oznaki rotacji, co wskazuje, że przed zderzeniem posiadała dysk.

System dwóch zderzających się galaktyk przypomina obiekt, który znajduje się znacznie bliżej: Galaktyki Anteny. Jest to widowiskowe zderzenie pomiędzy dwoma galaktykami, co do których uważa się, że posiadały w przeszłości strukturę dyskową. O ile Galaktyki Anteny formują gwiazdy w tempie kilkudziesięciu mas Słońca na rok, to w przypadku H1429-0028 każdego roku ponad 400 mas Słońca zamienia się z gazu w nowe gwiazdy.

Rob Ivison, Dyrektor Naukowy ESO i współautor badań, podsumowuje: „ALMA pozwoliła nam na rozwiązanie tej zagadki, ponieważ dostarcza informacji o prędkości gazu w galaktykach, co czyni możliwym rozróżnienie poszczególnych komponentów i ujawnienie klasycznych oznak galaktycznej kolizji. Te piękne badania uchwyciły zderzające się galaktyki w momencie gdy wzbudziły ekstremalne procesy gwiazdotwórcze”.

Uwagi

[1] Pośród armady instrumentów użytych do zbadania tej zagadki znalazły się trzy teleskopy ESO – ALMA, APEX oraz VISTA. W badaniach wzięły udział także: Kosmiczny Teleskop Hubble’a (NASA/ESA), teleskop Gemini South, teleskop Keck-II, Kosmiczny Teleskop Spitzera, Jansky Very Large Array,  CARMA, IRAM, SDSS oraz WISE.

Autor

Avatar photo
Redakcja AstroNETu