Zdjęcie w tle: NASA/JPL-Caltech
4000 dni marsjańskich po postawieniu swoich kół w kraterze Gale 5 kwietnia 2012 roku, łazik NASA Curiosity jest stale zajęty przeprowadzaniem badań naukowych. Niedawno pobrał z powierzchni swoją 39 próbkę i zmagazynował sproszkowaną skałę w swoim wnętrzu do dalszej analizy.
Celem dowiedzenia się, czy na Marsie panowały kiedyś warunki do podtrzymania mikrobiologicznego życia, łazik powoli wjeżdżał po 5-kilometrowym wniesieniu nazywanym Górą Sharpa, której warstwy pokazują kolejne fazy w odległej przeszłości Czerwonej Planety i oferują nam wgląd w to, jak zmieniał się panujący tam klimat.
Najnowsza próbka została pobrana z lokacji nazwanej „Sequoia” (wszystkie obecne cele naukowe łazika są nazwane po miejscach w Kalifornijskim Sierra Nevada). Naukowcy mają nadzieję, że próbka odkryje przed nami więcej na temat ewolucji klimatu i ewentualnych warunków mieszalnych Marsa, gdy stawał się coraz bogatszy w siarczany – minerały które mogły tworzyć słoną wodę, która wyparowywała w miarę wysychania Czerwonej Planety miliardy lat temu. Ostatecznie ciekła woda zniknęła stamtąd na dobre.
„Rodzaje siarczanów i minerałów węglanowych, które zostały zebrane i zbadane przez instrumenty Curiosity w ostatnim roku, pomagają nam zrozumieć, jak Mars wyglądał dawno temu. Przewidywaliśmy te wyniki od dekad, a teraz Sequoia powie nam jeszcze więcej.”
Tak wypowiedział się Ashwin Vasavada, naukowiec projektu Curiosity w Jet Propulsion Laboratory NASA w południowej Kalifornii, które zarządza misją.
Deszyfrowanie wskazówek dotyczących starożytnej historii Marsa wymaga pracy detektywistycznej. W pracy naukowej niedawno opublikowanej w Journal of Geophisical Reaserch: Planets, członkowie zespołu użyli danych zebranych przez instrument Chemistry and Mineralogy (CheMin) by wykryć minerał siarczanu magnezu nazywany w języku angielskim starkeyite, który jest powiązany z szczególnie suchymi warunkami – takimi jak obecny marsjański klimat.
Zespół wierzy że po uformowaniu się kryształów siarczanu magnezu w słonej wodzie wyparowującej miliardy lat temu, te minerały zmieniały się w starkeyite w miarę osuszania się powierzchni Marsa do jej obecnego stanu. Takie znaleziska uszczegóławiają rozumienie naukowców na temat Czerwonej Planety i procesu jej zmian się w to, czym jest dziś.
Łazik sprawdzony przez czas
Pomimo przejechania od 2012 roku ponad 32 kilometrów przez bardzo zimne i skąpane w promieniowaniu środowisko, Curiosity pozostaje silny. Inżynierowie obecnie pracują nad rozwiązaniem problemu w jedną z kamer łazika – lewą kamerą masztową (nazywaną MastCam) o ogniskowej 32 mm.
Oprócz dostarczania kolorowych zdjęć otoczenia łazika, obie kamery masztowe pomagają w ustaleniu składu skał z daleka na podstawie spektrów światła, jakie te skały odbijają. W tym celu Mastcam polega na filtrach rozmieszczonych pod jego kamerami, obracającymi się pod obiektywami. Od 19 września filtr lewej kamery zaciął się między dwoma filtrami, czego efekty są widoczne dobrze na wysłanych przez nią świeżych, nieobrabianych zdjęciach. Kontynuowane są próby delikatnego „szturchania” filtra do jego standardowej pozycji.
Jeśli nie uda się przywrócić filtra do standardowej pozycji, misja będzie musiała polegać na prawej kamerze masztu o ogniskowej 100 mm jako na głównym systemie kolorowego obrazowania. W wyniku takiej zmiany sposób, w jaki wyszukiwane są nowe miejsca do badań, zostałby zmieniony, ponieważ kamera musiałaby wykonywać 9 razy więcej zdjęć, niż wykonywała ich lewa kamera. Oprócz tego zdolności do badania odleglejszych skał na podstawie ich spektrum byłyby zmniejszone.
Razem z próbami naprawy filtra lewego Mastcamu, inżynierowie ściśle monitorują reaktor nuklearny łazika. Przewidują, że będzie on w stanie dostarczać łazikowi energii na jeszcze wiele lat. Znaleźli również sposób na rozwiązanie wyzwań związanych ze zużywającym się robotycznym ramieniem układu wiertniczego do pobierania próbek. Dzięki zaktualizowaniu oprogramowania rozwiązano kilka błędów i dodano kilka nowych możliwości, co sprawiło że pokonywanie dłuższych dystansów jest teraz prostsze, a także zmniejszyło się zużywanie kół łazika wynikające ze skręcania (wcześniejsze aktualizacje kontroli trakcji również pomogły zredukować zużycie kół wynikające z najeżdżania na ostre kamienie).
W międzyczasie zespół inżynierów planuje przerwę w komunikacji z łazikiem na parę tygodni w listopadzie, ponieważ Mars zniknie za słońcem podczas zjawiska nazywanego koniunkcją słoneczną. Plazma z naszej gwiazdy może zakłócać sygnały radiowe, potencjalnie wpływając na przesyłane łazikowi polecenia. Inżynierowie zostawią Curiosity z listą poleceń do wykonania od 6 do 28 listopada. Po tym czasie komunikacja zostanie wznowiona.
Korekta – Matylda Kołomyjec