Konstelacja małych satelitów mogłaby zrewolucjonizować badania najbardziej energetycznych eksplozji w kosmosie. Pomogłoby to astronomom rozjaśnić tajemnice zderzających się pozostałości gwiazd, produkujących potężne fale grawitacyjne.

Czym właściwie są rozbłyski gamma?

Promieniowanie gamma to wiązki wysokoenergetycznych fotonów lecących z odległych galaktyk. Promieniowanie gamma ma najmniejszą długość fali i produkuje największą ilość energii spośród całego spektrum elektromagnetycznego. Powstaje dzięki takim obiektom jak gwiazdy neutronowe, pulsary, eksplozje supernowych czy czarne dziury. Rozbłyski promieniowania gamma są najjaśniejszymi i najbardziej energetycznymi wydarzeniami od czasu Wielkiego Wybuchu

Przypadkowo odkryły je w 1960 roku amerykańskie satelity obserwujące rosyjskie testy broni nuklearnych. Przez długi czas były one zagadką dla astronomów. Według naszej wiedzy ich pochodzenie różni się zależnie od długości trwania. Podczas gdy jedne trwają jedynie kilka sekund, inne „rozświetlają” niebo przez długie minuty.

Dopiero w 1990 roku astronomowie odkryli, że krótkie rozbłyski promieniowania gamma są skutkiem zderzeń gwiazd neutronowych – bardzo gęstych pozostałości niezwykle masywnych gwiazd. Dłużej trwające wybuchy mają być skutkiem zakończenia procesu życiowego nawet potężniejszych gwiazd eksplodujących w supernowe, a następnie zamieniających się w czarne dziury.

Obydwa te wydarzenia emitują strumienie bardzo energetycznej materii, która rozświetla otaczający nas Wszechświat jak snop światła z latarki. Satelity orbitujące Ziemię wykrywają wybuch promieniowania gamma tylko wtedy, kiedy ten snop światła jest skierowany w naszą stronę. Nie jest to jednak rzadkie zjawisko. Takie wybuchy możemy zaobserwować niemal codziennie.

Satelita Swift nagrała rozbłysk gamma spowodowany przez narodziny czarnej dziury. To jeden z najdalszych wykrytych obiektów

Ponieważ rozbłyski promieniowania gamma są tak krótkotrwałe, nie zawsze jesteśmy w stanie namierzyć ich źródło. Utrudnia nam to zebranie na ich temat większej ilości informacji. Udaje nam się dotrzeć do źródła tylko 30% wykrytych błysków promieniowania.

Wykrywanie rozbłysków

Promieniowanie gamma nie może zostać odbite przez lustra, dlatego typowe teleskopy optyczne nie mają zastosowania w ich wykrywaniu. Mają tak małą długość fali, że mogą przejść przez szpary pomiędzy atomami w takim lustrze. Dlatego wykrywacze promieniowania gamma często zawierają ciasno upakowane bloki kryształu. Promienie przechodzące przez nie zderzają się z elektronami kryształów. Te kolizje tworzą naładowane cząstki, które mogą zostać wykryte przez detektor.

Mapa nieba z uwzględnieniem wysokoenergetycznych rozbłysków gamma. Zawiera pięć lat danych uzbieranych przez teleskop Fermi.

Obecnie na orbicie znajdują się dwie flagowe jednostki zajmujące się badaniem promieniowania gamma. Jedną z nich jest dwudziestoletni satelita misji Integral Europejskiej Agencji Kosmicznej, drugą Fermi należący do NASA. Zostały zaprojektowane do wykrywania wysokoenergetycznego promieniowania gamma, wykrywają większość rozbłysków dolatujących w stronę Ziemi z kosmosu. Dużo gorzej radzą sobie z odnajdywaniem ich źródeł. Inny ze statków NASA, Swift, bada zaledwie jedną dziewiątą nocnego nieba, co znacznie ogranicza jego skuteczność, biorąc pod uwagę to, że rozbłyski gamma są równomiernie rozsiane po całym Wszechświecie.

Teleskop Fermi

Przyglądając się obecnej technologii, która pozwala nam na badania nad promieniowaniem gamma, możemy stwierdzić, że jest ona przestarzała i mało skuteczna w kontekście szerzej zakrojonych badań nad pochodzeniem rozbłysków. Jest to czynnik, na którym bardzo nam zależy. Jeśli poznamy dokładną lokalizację powstania wybuchu będziemy mogli nakierować na nią teleskopy i obserwować skutki wydarzeń, które były jego źródłem.

Satelita Integral

Armia CubeSatów rozwiązaniem

Potencjalnym rozwiązaniem dla pojedynczych, mocno ograniczonych teleskopów jest stworzenie całej konstelacji mini-satelitów, z angielskiego CubeSatów. Ojcami tego pomysłu są Andras Pal i Norbert Werner, słowacki naukowiec. CubeSaty są małe, tanie i łatwe w produkcji.

Podczas gdy wymiana obecnego sprzętu byłaby niesamowicie droga i zajęłaby dużo czasu, konstelacja CubeSatów zaproponowana przez naukowców kosztowałaby jedynie około 10 milionów dolarów, a jej produkcja zajęłaby mniej niż trzy lata. Dodatkowo można wystrzelić kilka CubeSatów na raz, co ogranicza liczbę startów koniecznych do wyniesienia sprzętu na orbitę. Poprzez zmierzenie różnicy czasu, w jakiej różne satelity w różnych miejscach wykrywają rozbłysk, można metodą triangulacji wyznaczyć pozycję rozbłysku gamma na niebie.

Satelita GRBAlpha

Werner i Pal rozpoczęli realizację swojego pomysłu już w 2018 roku. Przekonali Węgierską Akademię Nauk do sfinansowania projektu. Doprowadziło to do wystrzelenia pierwszego CubeSata wykrywającego rozbłyski gamma w marcu 2021 roku. GRBAlpha wyleciał z kosmodromu Bajkonur w Kazachstanie wraz z rakietą Soyuz.

Norbert Werner, jeden z pomysłodawców projektu konstelacji cubesatów

Jego głównym zadaniem była demonstracja nowego detektora podczas lotu. Od czasu wystrzelenia wykrył 22 rozbłyski gamma. W międzyczasie Werner uzyskał poparcie czeskiego sektora kosmicznego dla pomysłu wystrzelenia kolejnego minisatelity. Trzy razy większy od poprzednika VZLUSAT-2 orbituje Ziemię od stycznia 2022 roku; od tego czasu wykrył 12 rozbłysków gamma.

Fale grawitacyjne

Jak zostało wspomniane wcześniej, rozbłyski promieniowania gamma mogą powstawać w skutek zderzeń gwiazd neutronowych. Innym ze skutków ubocznych takiej kolizji może być emisja fal grawitacyjnych. Według Wernera, lepszy system monitorowania rozbłysków gamma będzie niezwykle przydatną pomocą dla wykrywaczy fal grawitacyjnych. Pozwoli nam zbadać czy mają one jakiś obserwowalny wkład w powstawanie tych tajemniczych rozbłysków.

Przewidziane przez Einsteina w 1916 roku, fale grawitacyjne są „zmarszczkami” w czasoprzestrzeni, powstającymi w wyniku wzajemnych oddziaływań pomiędzy przynajmniej dwoma supermasywnymi obiektami, takimi jak gwiazdy neutronowe czy czarne dziury.

Takie obiekty często zostają wciągnięte w swoje sfery oddziaływania grawitacyjnego i zaczynają wokół siebie orbitować. Coraz bardziej zbliżają się do ciebie i w końcu się ze sobą zderzają, tworząc grawitacyjne tsunami. Tego typu fale mogą zostać wykryte na Ziemi przez wykrywacze fal grawitacyjnych takich jak LIGO czy Virgo.

Projekt Hermes

Jak się okazuje, Werner i Pal nie byli jedynymi, którzy wpadli na ten innowacyjny pomysł. Włoski projekt „HERMES” w 2018 roku wygrał dofinansowanie od Unii Europejskiej, pokrywające koszty zbudowania i wystrzelenia konstelacji sześciu CubeSatów wykrywających rozbłyski gamma.

Wystrzelenie pierwszego z satelitów planowane jest na drugą połowę 2024 roku. Ich satelity są dużo bardziej złożone od tych tworzonych przez zespół Wernera. Ich detektory wykrywają rozbłyski gamma, ale również znacznie mniej energetyczne promieniowanie rentgenowskie. Są również wyposażone w zestaw GPS-ó – akcelerometrów, które będą w stanie śledzić pozycję satelity z dokładnością do kilku metrów.

Testy podsystemów satelit misji HERMES

 

Korekta – Matylda Kołomyjec

Autor

Gabriela Mańczyk